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Performing complex synthesis by the use of simple addition Scheme 1. Asymmetric Hydrocarbonation
reactions significantly enhances the efficiency of such strategies. z\q/\

R>;/\
Unfortunately, too few such reactions exist. One of the most Nu " R PdL* Nu-H
important C-C bond forming processes is the alkylation of enolates.
Such processes typically require a stoichiometric amount of base i
and use of electrophiles such as organohalides and pseudohalides. Nu N’
R\//\—l *

To enhance the utility of such processes, we engaged in the
development of a hydrocarbonation of allenes catalyzed by pal-
ladium which meets the goal of an atom economic process because

PdL*
it is a simple addition where anything else is needed only
catalytically?=* The process would increase significantly in its
power, if it can be performed asymmetrically. Scheme 1 outlines R__ R
I_ at

the envisioned catalytic cycle. With unsymmetrical allenes, the issue
of regioselectivity as well as enantioselectivity also arises. Early H-PdL*
work established that an oxygen substituent gave an electronic biast
for nucleophilic addition to the substituted allene terminus in such
additions® The value of oxygen substitution led us to focus on
this substituent, that is, benzyloxyallehas shown in eq &.

A H-PdL* 1"

etraalkylammonium salt as additive. Even in THF, the ee increased

to 66%. A further increase to 85% ee occurred using methylene
chloride. Replacing malonic acid by 1 mol % trifluoroacetic acid

in methylene chloride gave the best result, an 81% yield with 94%

H Nu ee. Additional trifluoroacetic acid decreased the rate of the reaction.

e O N P 0 s /\:’H M Thus, the standard conditions became 1 mol % chiral catalyst in

1 : O Ph OPh methylene chloride at ambient temperature. Table 1 and eq 2

. ) ) . ~ summarize the results with various Meldrum acids and demonstrate
Initial experiments were performed under basic conditions using o generality of the reaction.

methyl Meldrum’s acid?a as the pronucleophile. Using 1 mol %
Table 1. Asymmetric o-Alkoxyallylation of Meldrum Acids?

0 NHQHN o o entry 2(R) isolated yield 5 eeb
R PRCH;O, H Q.. @ 1 CHs () 75% (a) 99%
fo) 8 o
. n%: XM \)% X + P“CHZOA\/%:OK 2 (CHs):CHCH (b) 61% (b) 88%
e [P-CaHsPACI, (3) Ry° R )0 3 CH=CHCH; (c) 82% (c) 96%
2 5 © 4 PhCH (d) 90% (d) 91%
a)R=Chy 3R =Chy 5 2-C4H30CH, (€) 81% (e) 94%
6 HO (f) 63% () 82%

m-allylpalladium chloride dimer and 5 mol % ligand in the
presence of 5 mol % potassiutart-butoxide required elevated a All reactions were performed using a 1:1 ratio of alkene and Meldrum’s
temperature (80C) in THF. Under these conditions, a 69% yield acid, 1 mol % palladium trifluoroacetate, 1.25 mol % ligatycand 1 mol

. ; ; ; % trifluoroacetic acid in methylene chloride (0.4 M) at room temperature.
ofa 3';]' ratio of branchgd (B) to linear (1,6) isomers Wz(i)s observe(_j' b Determined by chiral HPLC using a Daicel AD or OD column with 99:1
wherein the branched isomer showed a modest 38% ee. Additionneptane:2-propanol as eluent.
of 4 mol % TBAB increased the regioselectivity to 7.3:1 and the
ee to 72% (67% yield). Switching to DMSO where the reaction ~ The importance of quarternary amino acids led us to examine
proceeded at 28C dramatically influenced both the regioselectivity —azlactones as suitable nucleophiles (eq 3). This class also raises
(only 5) and the ee (83%) wherein the product was isolated in 86% the question of selectivity at the nucleophilic as well as electrophilic

yield. Use of tetraalkylammonium chloride salts (tetrabutyl, tetra-

; i o] o]
hexyl_, and_ benzyltriethyl) showed similar rfesult_s. _ . PAOECFa)s Ph/\O\H o
Using different batches of the Meldrum’s acid led to irrepro- ~ __ __O._Ph | T — N @)
ducibility of the results: the purer the Meldrum’s acid, the lower N=<Ph ChaCl R“‘N:<
the ee. Because malonic acid is a common contaminant, its effect 7 8 Ph

on the reaction was pursued. Indeed, addition of up to 1 equiv of
malonic acid fully restored reproducibility. Thus, the presence of center. Using the acidic conditions which worked so well for
base clearly is detrimental to the reaction, and optimization of the Meldrum’s acids gave very poor conversions with azlactones. Using
reaction as outlined in Scheme 1 should increase the concentratiorbenzoic acid rather than trifluoracetic acid for the reaction of
of the protonated palladium species. azlactonera (R = CHs) gave some conversion (285%) with a

In line with this suggestion, palladium trifluoroacetate was reasonable drx7:1) and ee of the major diastereomer<731%).
employed as the precatalyst with 1 mol % malonic acid and no The lower K, of azlactones as compared to that of Meldrum’s
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acids accounts for this divergence in behavior. Indeed, use of 2 philes!® In asymmetric alkylations of ketone enolates with these
mol % potassiuntert-butoxide provided complete conversion and palladium complexes, the use of excess strong base makes it highly
isolation of the product in 80% vyield with 7:1 dr and 73% ee. probable that these secondary amides are deprotoHatedhe

From the Meldrum’s acid results, it is clear that the reaction present case, it appears that such deprotonation is unfavorable. The
should be as acidic as possible. Thus, the reaction was buffered byexcellent regio-, diastereo-, and enantioselectivity make this a
using a carboxylic acid in conjunction with potassitert-butoxide. valuable alternative to aldol type processes which fail with such
Indeed, by adding 30 mol % benzoic acid, we obtained the alkylated stabilized nucleophiles due to the unfavorable equilibrium. Thus,
azlactoneBa (R = CHs) with excellent selectivity, a 24:1 dr and  the palladium-catalyzed asymmetric allylic alkylation embraces a
98% ee, while still maintaining reasonable conversion, 63% isolated new type of enantioselective-€C bond formation— addition of a
yield. On the other hand, trifluoroacetic acid even at 2 mol % gave C—H bond across an allene.
very low conversion. Hippuric acid (20 mol %) gave the best
compromise whereby the alkylated prod@et with a dr of 20:1
and ee of 93% was isolated in 85% yield. Using these buffered
conditions, we allylated a range of azlactones as outlined in Table
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